labs_title

Caldeira Lab Research:Energy, Global Carbon Cycle, and Climate

Advanced Technology Paths to Climate Stability: Energy for a Greenhouse Planet

Martin I. Hoffert, Ken Caldeira, Gregory Benford, David R. Criswell, Christopher Green, Howard Herzog, Atul K. Jain, Haroon S. Kheshgi, Klaus S. Lackner, John S. Lewis, H. Douglass Lightfoot, Wallace Manheimer, John C. Mankins, Michael E. Mauel, L. John Perkins, Michael E. Schlesinger, Tyler Volk, & Tom M. L. Wigley

The eventual stabilization of the climate requires the development and implementation of large scale alternative energy sources that do not emit carbon dioxide into the atmosphere. There are many roadblocks in the path to clean energy - primarily that no clean technology currently exists that could fully supply the world with its massive requirements. This is a review of possible alternative energy sources that could be used in the future.


Hoffert, M.I., K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, J.W. Katzenberger, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, W. Manheimer, J.C. Mankins, G. Marland, M.E. Mauel, L.J. Perkins, M.E. Schlesinger, T. Volk, and T.M.L. Wigley, Advanced technology paths to global climate stability: Energy for a greenhouse planet, Science 295, 981–987, 2002.

Carbon sequestration: Sequestering carbon emitted during fossil fuel burning is a prevalent proposition as to how we could continue using fossil fuels without altering the climate. Although sequestration seems simple enough, massive rates are required to make fossil fuels "clean".

Using solar and wind power for clean energy: Largescale implementation of mass produced solar panels and windmills could be used for cheap production of clean electricity and hydrogen gas.

Abstract

Stabilizing the carbon dioxide–induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power requirements that are free of carbon dioxide emissions could be several times what we now derive from fossil fuels (≈1013 watts), even with improvements in energy efficiency. Here we survey possible future energy sources, evaluated for their capability to supply massive amounts of carbon emission–free energy and for their potential for large-scale commercialization. Possible candidates for primary energy sources include terrestrial solar and wind energy, solar power satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil fuels from which carbon has been sequestered. Non–primary power technologies that could contribute to climate stabilization include efficiency improvements, hydrogen production, storage and transport, superconducting global electric grids, and geoengineering. All of these approaches currently have severe deficiencies that limit their ability to stabilize global climate. We conclude that a broad range of intensive research and development is urgently needed to produce technological options that can allow both climate stabilization and economic development.